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DEPTH ABOVE A DROP OF THE CHANNEL BOTTOM

AFTER FREE-SURFACE DISCONTINUITY DECAY

UDC 626.4:53.072.12A. V. Gusev

This paper reports experimental data on the depth above a bottom drop in a rectangular channel after
removal of a shield that produces the initial difference in the free-surface level. It is shown that at
a sufficiently large height of the drop, this depth is approximately 40% smaller than that obtained in
the first shallow-water approximation.
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The hydrodynamic processes considered in this paper are typical, for example, for accidents at ship locks
due to lock-gate failure. A significant feature of the formulation of the corresponding research problem compared to
the classical dam-break problem is that at the lock-gate location there is a drop — a sharp lowering of the bottom
level from the upper to the lower lock chamber. In this case, the hydrodynamic processes in the upper and lower
chambers are largely controlled by the flow pattern directly above the drop. In particular, the submerged and free
states of head and tail conjugation differ appreciably. By the definition [1], the state of conjugation is called free
if the processes in the head water do not depend on the processes in the tail water. This is the case if the drop
depth h0 is smaller than the critical depth h∗ = (q2/g)1/3 (q is the discharge intensity and g is the acceleration
of gravity). One also distinguishes between the bottom and surface states of head and tail conjugation [1]. In
stationary flow behind the drop, a change between these states occurs when h0 ≈ h∗/1.3 [2]. The depth h0 also
determines the shape of the depression wave in the head water.

The hydrodynamic processes due to lock-gate failure are analyzed in [3] using the first shallow-water ap-
proximation. The same approach is developed in [4]. In [3], the submerged state is not considered, but the sought
functions include the height and propagation velocity of the wave reflected from the intact gate in the tail water.
In [4], the submerged state is also considered, but the channel is unbounded upstream and downstream. The results
of [3] were tested in the experiments of [5], and those of [4] in [6].

Previously, the first shallow-water approximation has been used to solve the dam break problem for a channel
with an even bottom (see, for example, [7, 8]). In the problem of lock-gate failure, the classical formulation [7, 8]
should be supplemented by conjugation conditions above the drop. In [3, 4], this is done by invoking the energy
conservation law in addition to the conservation laws for mass and momentum.

According to [3, 4], in the free state, the drop depth h0 = h∗. Experiments [5] performed for one value
of the drop height gave a considerably different result. At the same time, in the case of an even bottom at the
dam location, the critical depth h∗ is indeed established. The present paper gives a more detailed experimental
information for drops of various heights and shapes, including the case of dam break above an even bottom with a
drop height b = 0.

The experiments described here were performed in a rectangular channel 20.2 cm wide with the left butt-end
open and the right butt-end closed. The open butt-end was joined to a tank 1 m wide and 3.3 m long, as shown in
Fig. 1. At a distance of 4.67 m from the open butt-end, the channel-bottom level began to decrease linearly from
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Fig. 1. Experimental setup (dimensions in centimeters).

one constant value to another. In this cross section of the channel, which was taken as the origin of the longitudinal
coordinate x, an initial free-surface difference was produced by means of a vertical shield (see Fig. 1). At the time
t = 0, the shield was removed upward with a lever. The motion of the shield was recorded by a side-wire gauge.
The time of exit from water for the lower edge of the shield did not exceed 0.05 sec.

The initial depths of the head water h− and tail water h+ (see Fig. 1) were measured with measurement
needles with an absolute error not worse than 0.02 cm, and the depth in the other cross sections of the channel (in
particular, in the shield section h0) were measured with wavemeters. The principle of operation of the wavemeters is
based on the difference in electric conductivity between water and air. The resolution of the wavemeters determined
from the double root-mean-square values of their self-noises was 0.02 cm. The upper bound of the oscillation
frequency measured by the wavemeters with an error no greater than 10% was approximately 10 Hz. The electrical
signals of the side-wire gauges and wavemeters were entered into a computer using a standard eight-channel analog-
to-digital ACL-8112 converter. In the analog-to-digital conversion, the step in time did not exceed 0.008 sec. The
total random error of the measurements was estimated from the results of repeated measurements under identical
conditions. The root-mean-square value of this error did not exceed the size of the experimental points on the plots
given below.

The main external parameters of the problem are h−, h+, g, and the height b and slope of the drop α (see
Fig. 1). At large times, the lengths of the segments from the shield to the open and closed butt-ends of the channel,
the geometrical parameters of the tank at the head of the channel, and the energy losses due to friction on the
channel bottom and walls are also of significance. The examined value h0 is a complex function of these parameters
and time. For each of its arguments, there are critical conditions in the sense that in the neighborhood of definite
values of the argument there are fast changes in h0 due to changes in the flow pattern. In particular, as regards the
parameter h+, there are considerably different processes of wave propagation over the dry and flooded bottoms, the
submerged and free conditions, the bottom and surface states of head and tail conjugation, attached and detached
jet regimes or an air cavern in the neighborhood of the drop [9].

According to [3, 4], after removal of the shield, the depth h0 changes instantaneously from h− to a smaller
constant value; in the free state, as in the case of dam break above an even bottom, this constant value is equal to
the critical depth

h∗ = 4h−/9.

In the experiment, the transition from h− to the smaller constant value is fast but not instantaneous. In these
experiments, the time of attaining the constant value of h0 did not exceed 0.35 sec. This constant value was kept
until the perturbation reached one of the channel butt-ends, resulting in a change in the boundary conditions.
The value of h0 shows an especially fast response to a change in the boundary conditions at the open end of the
channel since the upstream flow is subcritical. In the case of an even bottom and the free state, the downstream
flow is supercritical and the change in the boundary conditions at the closed end of the channel does not affect h0.
Significant changes in h0 begin at the moments the reflected waves arrive at the shield location.

The results of measurement of h0 in the time intervals where its value was constant are given below. This
constant value is denoted by h0. The characteristic linear scale for nondimensionalizing was the initial depth h−.
Nondimensional quantities are denoted by superscript zero.
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Fig. 2. Experimental curve of the depth at the shield location versus the sill height [h− = 15 cm,
h0

+ = 0 (dry bottom), and α = 90◦).
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Fig. 3. Depth at the shield location versus tail-water depth in the case of an even bottom (b0 = 0):
curve 1 refers to the theory [8] and points 2 and 3 refer to the experiment at h− = 15 and 22 cm,
respectively.

Fig. 4. Depth at the shield location versus tail-water depth in the presence of a drop (h− = 12.5 cm,
b0 = 0.576, and α = 90◦): 1 and 2 refer to the upper bound of the free state (experiment and
theory [3], respectively).
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Fig. 5. Experimental curve of the depth at the shield location versus α [h− = 15 cm, b0 = 0.48, and
h0

+ = 0.133 (free state)].
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Figure 2 gives a curve of h0
0 versus b0 for constant values of h−, h+, and α. The experimental points in

this figure were obtained for the case of a sudden lowering of the bottom (α = 90◦) and the free state of head and
tail conjugation for all values of b0, including the case of an even bottom (b0 = 0). The values h0

∗ = 4h−/9 and
h0
∗∗ ≈ h0

∗/1.3 are shown by dashes.
Recently, it has been found experimentally (see, for example, [2, 10]), that along with h∗, the quantity h∗∗ is

one more critical parameter in a number of problems of open-channel hydraulics. In particular, exactly this depth is
established on the boundary between the channel exit and the atmosphere [10] and it is also a convenient parameter
for the identification of different forms of hydraulic jumps and transition from the bottom to the surface state of
head and tail conjugation [2]. In this connection, in [2, 10], h∗∗ is referred to as the second critical depth.

The experimental data in Fig. 2 show that the result h0
0 = h0

∗ (in the free state) obtained in the first
shallow-water approximation was confirmed only in the case of an even bottom, and that for b0 > 0.23, the second
rather than the first critical depth was established at the shield location. One should expect that the observed
regularity holds as b0 increases beyond the experimental values since it also occurs in flow passage from the channel
to the atmosphere (b0 →∞) [10].

Figure 3 shows a curve of h0
0(h

0
+) for b0 = 0 (even bottom) in both the submerged and free states. According

to [8], in the free state (in particular, in the case of a dry bottom, where h0
+ = 0) h0

0 = h0
∗ and the upper bound

of the free state is specified by the condition h0
+ = h0

+∗ ≈ 0.138. These results were confirmed. In the submerged
state, the experimental value of h0

0 is smaller than the theoretical value. The difference is lower than 10%.
Figure 4 shows a curve of h0

0 versus h0
+ for b0 = 0.576 and α = 90◦. For this value of b0 there is a range

of the parameter h0
+ in which, unlike in the range obtained in [3, 4], the second rather than the first critical depth

is established above the drop (see Fig. 2). In example considered, this occurred at h0
+ < b0. In the presence of a

drop, the experimental data are in conflict with those of [3, 4] for the upper bound of the free state too. According
to [3, 4], this bound corresponds to h0

+∗ = b0 + h0
∗. In the experiment it was found that h0

+∗ ≈ b0 + 0.5h0
∗.

Figure 5 gives an experimental curve of h0
0(α) for fixed values of the other parameters. This dependence has

not been studied theoretically. According to the assumptions of the first shallow-water approximation, the smaller
the value of α, the better. The example in Fig. 5 shows that the experimental points deviate markedly from the
dependence h0

0 = h0
∗ even for α = 3◦, and for α > 30◦, the second rather than the first critical depth is established

above the drop.
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